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Abstract

We introduce a novel decentralized network tailored for zero-knowledge
(ZK) proof verification, specifically designed to overcome cost and
computational limitations in Web3. By modularizing the verification
process, our zkVerify protocol significantly reduces costs and
computational burdens associated with traditional Layer 1 blockchains.
This shift not only facilitates broader experimentation with and adoption of
diverse proving systems, but also ensures the scalability and efficiency of
these systems. zkVerify’s approach leverages a secure protocol to maintain
the integrity and reliability of proofs across the network. Through this
framework, we aim to expand the frontier of verifiable computing, making
it more accessible and adaptable to a wide array of applications.

1 Introduction

Recent advancements in proving systems have integrated a range of diverse finite fields,
state-of-the-art hash functions, elliptic curves, and polynomial commitment schemes. Despite
these exciting developments, significant barriers hinder adoption. Many projects using these
systems require their proofs to be verified, and in doing so, they encounter prohibitive
verification costs and arduous DAO processes, ultimately stifling potential exploration and
innovation.

We introduce zkVerify, a decentralized network for ZK proof verification, that substantially
lowers the costs of verification and extends the range of possibilities within Web3 to use different
cryptographic primitives and systems. As execution and data availability have been offloaded
from monolithic blockchain stacks, we believe that proof verification and settlement need
specialization. This system provides such specialization and, by doing so, enables the next wave
of innovation for ZK cryptography within Web3 and beyond.
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1.1 The State of Proof Verification

1.1.1 Proof Verification Market

As we transition into the age of verifiable computing, ZK proofs emerge as pivotal accelerators,
enabling the secure and private verification of computations using arguments of computational
integrity. This technological leap forward has already led to revolutionary breakthroughs in
blockchain scalability, including zkRollups, zkVMs, zkApps, and other ZK-enabled solutions.
Some research reports have projected ZK proofs to exceed $10 billion in revenue by the year
2030 [1].

In terms of the total number of proofs created by 2030, it has been estimated that 90 billion
proofs will be generated by Web3 applications alone [1]. When discussing proofs, most of the
discussion has revolved around either proof generation and/or proof aggregation, and
legitimately so, since the majority of improvements can be realized in those areas. However, the
aspect of proof verification has not received equal attention. For those anticipated 90 billion
proofs that will be generated, 90 billion proofs will also need to be verified.

Figure 1: A simplified view of the lifecycle of a ZK proof, where
proof generation and aggregation has received most of the focus.

Proof verification has not been given equal emphasis.

1.1.2 Hampering Innovation

Ethereum Improvement Proposals (EIPs) are design documents that outline new features,
standards, or processes for the Ethereum blockchain, serving as a primary mechanism for
proposing changes to the network. Two EIPs (EIP-196 and EIP-197) significantly impacted the
development of rollups and zkVMs (zero-knowledge virtual machines) by providing essential
cryptographic building blocks to perform ZK proof verification on the Ethereum blockchain.

They introduced precompiled contracts for elliptic curve operations and pairings on the
alt_bn128 elliptic curve (BN254 / Barreto-Naehrig curve), which is a popular curve for

2



DR
AF
T

zk-SNARKs. Released to Mainnet as a part of the Byzantine hard fork on October 16, 2017,
both EIPs directly influenced many rollups (and other clients) to convert their proofs into
compatible BN254 pairing-friendly proofs before on-chain verification. This conversion
process also included aggregation of proofs, which resulted in longer finality times.

Figure 2: The process followed by zkRollups (and other clients) to
aggregate and convert their proofs for on-chain verification,

leveraging the available precompiled contracts.

The choice to standardize around the BN254 curve, while practical at the time of
implementation, means that operations involving other elliptic curves are not directly supported
and are prohibitively expensive to execute. A notable example is the BLS12-381 elliptic curve,
which is increasingly preferred in modern cryptographic applications due to its higher security
margins and efficiency in handling certain types of cryptographic proofs. EIP-2537 was created
in February 2020, and it is unclear whether its implementation will be available soon. This lack
of support restricts the variety of cryptographic techniques that can be efficiently employed on
the platform, limiting innovation as cryptographic standards evolve.

In general, progressing EIPs forward can be challenging due to the rigorous process involved, its
need for widespread consensus via the DAO, and the lack of effective prioritization amongst
multiple competing priorities with different stakeholders. EIP-2537 is just one example that
highlights how the slow EIP process can stifle innovation, especially in areas like ZK
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cryptography where rapid development is crucial. The bottlenecks in approving and
implementing EIPs hinder the adoption of cutting-edge proving systems, limiting the potential
advancements in scalability and privacy.

1.1.3 Prohibitive Cost

From a macro cost perspective, the proof verification market is estimated to incur $100+ million
in security expenses alone for zkRollups in 2024, extending to $1.5 billion by 2028 when
including ZK applications.

Proof Verification Market Projected Annual Expenses

2024: zkRollups Only $100+ million

2025-2027: zkRollups Only $500+ million

2028+: Including zkApps, such
as Private Voting, ID, Gaming.

$1.5+ billion

Figure 3: Projected annual security expenses
for proof verification alone [2].

On a more granular level, the verification of a single ZK proof on Ethereum can range from $16
to $205 per proof, depending on the proof type in the current market. Beyond nominal fees today,
the variability of future fees inhibits product adoption. Offloading proof verification from L1s,
such as Ethereum, serves to both drastically lower nominal costs, but also to stabilize costs over
time in a way that segregates fees from gas volatility.

Proof
Type

Gas Cost
(per proof)

USD Cost
(per proof)

Fflonk 179,187 $16.13

Plonk 292,685 $26.34

Halo2 320,108 $28.81

Groth16 194,060 $29.39

STARK 2,273,943 $204.65

Figure 4: Cost of verifying a single proof,
assuming 30 gwei and ETH at $3,000 [3].
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Proof verification costs can contribute to being prohibitively difficult to perform private DeFi
transactions, cast a private vote on a DAO, or validate proof of personhood. Identity
applications, such as Worldcoin [4], verify ZK proofs to ensure the user’s uniqueness without
revealing personal data. Each proof verification can consume upwards of 200,000 to 300,000 gas
units. Given that gas prices can fluctuate significantly, the cost of verifying a single proof can
vary widely. In times of network congestion, gas prices have reached over 100 Gwei, which
means that verifying a single proof could cost between $20 to $60 or even more, depending on
the Ethereum price and network conditions. To alleviate costs, Worldcoin has recently
announced a move to an L2 blockchain based on Optimism's OP stack. While this may mitigate
the issue in the near term, it does not address the fact that billions of dollars of users’ liquidity
and assets still live on Ethereum and not its L2s.

1.2 Our Contribution

With zkVerify, we are committed to advancing innovation by supporting the continued rise of
novel proving systems that utilize diverse finite fields, cutting-edge hash functions, elliptic
curves, and polynomial commitment schemes. As newer and more efficient proving systems are
being introduced, the zkVerify protocol will seamlessly integrate new proof types into our
proof verification network.

Figure 5: The versatility of zkVerify to accept
proofs from any client, including zkRollups, zkBridges,
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zkApps, and support for any new future zkApps.

As ZK proof technology becomes more accessible with both hardware and software
improvements, we anticipate a significant surge in demand for proof verification services.
This increase will stem from a variety of sectors seeking enhanced privacy and security
measures, necessitating a robust and flexible infrastructure capable of supporting a wide array of
cryptographic proofs without the limitations currently faced on L1 platforms.

zkVerify is designed to meet this burgeoning demand, ensuring scalability, security, and cost.
Below are projections on cost savings using the zkVerify protocol.

Proof
Type

Gas Cost
(per proof)

USD Cost
(per proof on Ethereum)

Projected cost
with zkVerify

Fflonk 179,187 $16.13 $1.45

Plonk 292,685 $26.34 $2.37

Halo2 320,108 $28.81 $2.59

Groth16 194,060 $29.39 $2.65

STARK 2,273,943 $204.65 $18.42

Figure 6: Potential cost from leveraging zkVerify,
after applying a projected cost reduction of 91% [5].

The proof verification process stands out as the next frontier for both cost reduction and
innovation. It unlocks the freedom to explore new paradigms, including new proving systems
(such as efficient SNARKs over binary fields [6]), exploration into new hash functions, continued
advancement in both Ethereum and Bitcoin rollups, and cost efficiency to zkApps. Just like the
way L2s innovated Ethereum, our goal is to supplement and partner with L1s to accelerate
their cryptographic roadmaps to bring even more breakthroughs to life.

2 zkVerify Architecture

2.1 Overview

zkVerify consumes the influx of proofs that come from various sources, such as proofs from zkID
apps, zkDeFi apps, zkVoting apps, ZK games, ZK NFT apps, zkRollups, and ZK bridges. These
proofs can be created from different proving systems with various formats, proof sizes,
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recursive composition, and circuit complexity. These could include proof types such as Groth16,
Plonk, Fflonk, UltraPlonk, Halo2, STARK, and Boojum.

Figure 7: An alternative view of Figure 5,
where zkApps, rollups, and bridges submit proofs that are
created from various heterogeneous proving systems.

Developers have the freedom to choose the proving system tailored for their use case, adjusting
for speed, security, proof size, cost, and any other considerations. Figure 5 shows the high-level
workflow where:

● Proofs are accepted from any client, ranging from zkRollups, zkBridges, and zkApps.
These proofs can originate from many heterogeneous proving systems.

● zkVerify verifies these proofs with native verifiers written in Rust, which is more efficient
and more easily upgradable than Solidity. As new proving systems are introduced, new
native verifiers can be conveniently added/upgraded without impacting clients.

● The verified proofs are then included in storage for public accessibility.
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2.2 Core Components

Figure 8: zkVerify architecture
and its high-level components.

From a high-level architectural perspective, the core components of zkVerify are:

1. Mainchain: This is an L1 Proof-of-Stake blockchain, whose main responsibilities are to
receive, verify, and store validity proofs. It houses the verifier modules (such as the native
Rust verifiers for Fflonk and Groth16), ensures that the proof is included into a block, and
then creates the zkVerify Merkle tree.

2. Proof Submission Interface: This is the interface (for transactions and RPC calls) that
receives heterogeneous proofs from various sources, such as zkApps, zkRollups,
zkBridges, and other ZK clients.

3. Attestation Mechanism: This refers to the protocol that creates and publishes an
attestation, which contains the Merkle root (of a heterogeneous proof tree), onto the
zkVerify L1 contract once a given policy is met.

4. zkVerify L1 Contract: The core responsibility of this smart contract is to store new
attestations, validate them, and provide capabilities for users to verify that their proof is
part of the attestation.
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2.3 High-Level Workflow

Figure 9: zkVerify high-level workflow.

The workflow of the zkVerify protocol is designed with foundational principles of efficiency,
scalability, and upgradability. The steps in this workflow are as follows:

1. A zkApp wants to verify a proof. In this example, it is an Fflonk proof.

2. The Fflonk proof is submitted to the zkVerify protocol via the Proof Submission
Interface, which has the following format:

Transactions
● Signature: submitProof(proof, vk, public_inputs) -> Result<AttestationId,

Error>
Pallet: SettlementFflonkPallet
Type: Non-blocking
Description: Submit the proof and verify it against the supplied vk and public inputs. Returns the id
of the attestation in which the proof will be included, Error otherwise (please note that this will be
done only upon inclusion of the proof in a mainchain block).
Note: Each different proof verification pallet will expose this API.

RPC Commands
● Signature: proofPath(attestation_id, proof_leaf) -> Result<merkle_path,

Error>
Endpoint: PoE (Proof of Existence)

Type: Non-blocking
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Description: Get the Merkle path of the proof within the provided attestation, returning Error if the
attestation_id’s Attestation event isn’t published yet.

3. The Fflonk proof is then verified by a native Rust verifier.

4. After verification, the proof is then queued for block inclusion.

5. An attestation is produced based on a set of given policies which includes the attestation
size and frequency of submission. The attestation data structure is a digitally-signed
message that contains the

○ Merkle root of the zkVerify Merkle tree that contains proofs as leaves, and the

○ Attestation ID used for identification, synchronization, and security purposes.

Figure 10: zkVerify Merkle tree, which shows
various proof types at its leaves, serving as a form of

natural aggregation across heterogeneous proving systems.

6. The attestation is then sent to a relayer that publishes the attestation to a zkVerify L1
contract. The policy leading to the publication of a new attestation is met when one of the
following rules is satisfied:

○ Last attestation contains N proofs, where N is the attestation size.

○ Last published attestation is older than T seconds and there is at least one proof in
the new tree.
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zkVerify will provide various options on which destination chains to send an attestation.
The users, when submitting a proof, will need to specify the destination chain. Note that:

○ We can envision different attestation publication policies for each destination
chain, depending on different characteristics. Ideally, we would like this policy to
change dynamically depending on how the destination chain changes (e.g. we
might employ an oracle) and/or how many users are interested in bridging on that
chain, instead of it being fixed since genesis and thus hardly changeable.

○ Users submitting proofs to zkVerify will pay the fee required to perform basic
operations plus the fee required to compensate the relayer for posting the proof on
the destination chain (different for each chain).

7. The zkApp’s contract verifies that their proof has been attested by a published attestation
via a Merkle proof of inclusion.

3 zkVerify Use Cases

3.1 Unlocking New Proving Systems

3.1.1 Building Blocks of ZK Proof Systems

The performance of a modern ZK proof system heavily relies on:

● Its method for polynomial interpolation, and

● Its underlying hash function.

Together, these two building blocks easily make up more than 70% of many modern proving
systems, which is why significant amounts of research have been put into making both of them
faster1.

1 The remaining 30% is determined by the specific circuit and its operations, leading to variations across different
use cases. It's uncertain whether this portion can be easily optimized, if at all, whereas optimizing interpolation
methods and hash functions presents a more straightforward target.
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proving system is impacted by two main building blocks:
its polynomial interpolation method & its underlying hash function.

Polynomial interpolation for a proving system is usually implemented by applying methods such
as the fast Fourier transform (FFT). New methods for interpolation are being discovered at a
fast pace, such as ECFFT [7] and Circle STARKs [8].

Innovation in the field of hash functions is also moving swiftly. Latest developments include a
focus on FRI-friendly fields. FRI (Fast Reed-Solomon Interactive Oracle Proof of Proximity) is a
technique used by modern proving systems to use solely hashing, avoiding the complexities
associated with elliptic curves. Some of these emerging hash functions for FRI-friendly fields
include Poseidon2 [9], Monolith [10], and Vision Mark-32 [11].

For example, while most hash functions focus on prime fields, the recent Vision Mark-32 hash
function relies on binary extension fields, allowing for an efficient recursive proving approach in
some settings. In hardware implementations, binary extension fields are the more popular choice
compared to prime fields, mainly because they do not require complex wiring for carry bits.

As building blocks to modern proving systems, both polynomial interpolation and hash functions
are achieving remarkably rapid progress. The zkVerify protocol can fast-track these
innovations as they are being integrated into newer and more efficient proving systems.

3.1.2 Enabling the Adoption of new Proving Systems

As the foundational building blocks of proving systems are seeing significant advancements, so
are the proving systems and its underlying proofs themselves. We have now progressed beyond
the standard two types of proofs: (elliptic-curve-based) SNARKs and (hash-based) STARKs.
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Some noteworthy innovations include:

1. Binius: This is a novel proof system designed specifically for operations over binary
fields (fields consisting of zeros and ones) rather than larger prime fields. Traditional
systems like SNARKs and STARKs require working over prime fields to maintain
efficiency (mainly related to interpolation approaches), which can introduce inefficiencies
due to the large size of field elements. Binius bypasses this limitation by focusing on
binary fields, which are naturally smaller and align well with standard computer
architecture, thus allowing for proofs that are faster and less resource-intensive.

Binius leverages the inherent properties of binary computation - such as simplicity in
arithmetic operations like addition, which can be performed using XOR operations
without carry operations. This results in higher efficiency in both space and time
compared to proofs over larger finite fields. Finally, and this is one of the biggest
advantages of Binius, it exploits the structure of binary extension fields in order to embed
naturally small elements (i.e., elements which are known to be small) in equally small
memory places. This property is sometimes referred to as zero embedding overhead, and
it is not compatible with prime fields.

2. Rinocchio [12]: Almost all proving systems used in practice today work over finite fields.
Rinocchio is a modern proving system that extends SNARKs to support computations
over rings (such as integers modulo 264) instead. Traditional SNARK constructions
often depend on specific groups of matching order with secure bilinear maps,
constraining them to operations over prime fields. Rinocchio, by enabling verifications
over rings, overcomes these limitations, providing more flexibility for verifiable
computation over encrypted data and for proving computations that align with real-life
computer architectures. It is, however, unclear whether the additional overhead of Galois
ring operations is sufficiently small to allow these proofs to be competitive.

The zkVerify protocol provides a robust platform that significantly aids in the advancement and
adoption of innovative proving methods like Binius and Circle STARKs. By integrating these
proofs into our protocol, verifiers on our network can efficiently validate the proofs generated by
these new technologies. As a result, the barrier to entry is lowered for using these advanced
cryptographic proofs, making it more accessible for developers to implement and leverage these
technologies in real-world applications. Our protocol serves as a catalyst for innovation, fostering
a faster uptake and broader implementation of cutting-edge proving systems across diverse
sectors.
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3.2 Innovating Rollups

3.2.1 Bitcoin zkRollups

There has been a recent surge in companies proposing zkRollups on Bitcoin (Citrea, BoB, and
Arch). All of these solutions encounter the same issue: due to Bitcoin Script language
limitations, it is comparatively expensive to directly verify a zkProof on-chain. Instead, the
verification happens off-chain. The proof is then inscribed on Bitcoin, where a party could
challenge the validity of such a proof by playing a rather complex, expensive, and limited
on-chain fraud proof protocol (see Citrea with BitVM [13]).

Figure 12: High-level architecture
for Bitcoin zkRollups.

The zkVerify protocol is well-positioned to play a significant role in this context, acting as a
decentralized verifier network for proofs coming from Bitcoin L2 (usually zk(E)VM proofs),
thus providing additional guarantees over the optimistic assumptions.

3.2.2 Fast-Finality Optimistic Rollups

Optimistic rollups do not generate validity proofs, but instead post a transaction batch and its
updated state root on-chain for public verification. A week-long window remains open to allow a
party to challenge the validity of the batch by submitting a fraud proof. However, there is no
guarantee that any party will in fact take on this responsibility. The fraud proof protocol must
also be played on-chain, which can be expensive and difficult to implement. In many cases, its
implementation is still pending, leaving a notable security vulnerability.
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Optimistic rollups and their users stand to benefit from achieving faster finality and reducing
reliance on fraud proofs. Certain companies, such as AltLayer, are already developing solutions
based on this concept.

Figure 13: An example of integrating the
zkVerify protocol with optimistic rollup.

In the same vein, the zkVerify protocol can intercept transaction batches as they are produced by
rollup sequencers, create a validity proof of the batch itself, and finally submit it to zkVerify for
verification. This validity proof can be:

● A Merkle proof of correct state update.

● A proof of transactions validity and correct state updates, obtained by executing the
transaction batch in a zk(E)VM.

Using this approach, finality decreases from one week to minutes. Many complementary
approaches can also be built off the underlying premise of leveraging ZK proofs for optimistic
rollups, including the idea of running the fraud proof protocol off-chain and producing a ZK
proof of the correct state update once the faulty transaction has been found.

3.2.3 Skipping Aggregation & STARK-to-SNARK

zkRollups produce proofs of multiple transaction batches and aggregate all of them, via recursive
proof composition, into a single one that gets posted on-chain. This is required in order to
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amortize the costs of the on-chain proof verification and data storage. This solution is effective,
but it also has the following drawbacks:

● The time to finality increases dramatically with increasing recursion depth.

● Extra costs are sustained to account for the proving infrastructure.

● An expensive final transformation step (usually a STARK to SNARK conversion) is
required to reduce the final on-chain costs.

Figure 14: Polygon zkEVM proof aggregation architecture.

In order to overcome such disadvantages, zkRollups can capitalize on zkVerify’s unique
capabilities by:

● Directly verifying the proofs of the single transaction batches without the need to
recursively aggregate them (up to some extent).

● Omitting the expensive final STARK-to-SNARK conversion.
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Although cost savings and time-to-finality require careful balancing, the zkVerify protocol
presents an improvement over traditional proof aggregation layers, providing users with greater
freedom and authority to determine their optimal balance between cost, finality, and security.

3.3 Streamlining zkApps

3.3.1 Current Developer Landscape

Outside of the L2 scalability use cases, ZK proofs also play a pivotal role in privacy preserving
applications. These applications include consumer apps (such as gaming and NFT’s), identity,
DeFi, voting, and more. They each have unique, purpose-built business logic, along with their
own requirements for preserving digital privacy.

Just as several programming languages and frameworks exist for building traditional
applications, the same is also true in the ZK applications landscape. zkApp developers may
choose from a variety of tools, languages, and frameworks, each maintaining their own degrees
of abstraction, complexity, generalization, and vendor lock-in. One developer may need fine
grained control over their entire stack and reach for low-level libraries of ZK primitives, such as
Arkworks. Another may already have some knowledge of ZK core concepts, and choose to
encode their business logic into a custom circuit, leveraging a Domain-Specific Language (DSL),
such as Circom or Noir. Yet another may not be concerned about optimizing proof size or
generation time, and opt for a more general tool, such as a zkVM like RISC Zero. Going even
further, one may choose a zkEVM or ZK-optimized EVM (such as zkSync or Manta), if they
already have an existing Solidity-based application.

As we see, the ZK developer toolkit is only growing and maturing, creating more and more
avenues for proof generation. As more proofs are being generated, those proofs will also need to
be verified. zkVerify is well-positioned to meet this demand by means of a modular proof
verification layer, integrating easily into the software stack of any ZK application.

3.3.2 Innovating on the Current Stack

A common pattern for end user ZK applications is for proofs to be generated client-side (either in
the user’s browser, local hardware, or even a secure cloud) and then submitted to a verifier smart
contract. See simplified diagram below:
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Figure 15: The general pattern of proof generation
and verification for ZK applications.

This pattern has some advantages, namely the ability to co-locate application state transitions
along with their associated proof verifications on-chain. The downside, though, is the increased
cost associated with verifying a proof on Ethereum. Issues ranging from limited blockspace to
optimization bottlenecks can cause applications to become cost prohibitive.

Similarly to how blockchain data storage solutions have taken shape recently (Data Availability
Layers, Data Availability Committees (DACs)), there is a need to bring innovation and new
solutions to the proof verification space. As a blockchain optimized for verifying proofs,
zkVerify can solve the cost overhead issues faced by many applications today. By adding
zkVerify to the application architecture, developers can optimize their proof verification cost,
improving user experience, and allowing for production grade applications at scale.

Figure 16: The workflow of a ZK application
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with zkVerify for proof verification.

The figure above demonstrates one possible integration of zkVerify into a typical ZK application
flow. We notice that the responsibility of verifying proofs has been delegated entirely to
zkVerify, and only attestations (small hashes) are ever stored on the settlement chain.

Zk application developers have the opportunity to leverage different levels of finality in their
application, which could even further improve the user experience. For example, instead of
waiting for attestations to be written to the settlement chain, ZK applications can optimistically
move forward on their application flow, while asynchronously awaiting future levels of
confirmation.

4 Standardization for Proof Verification

The zkVerify protocol has the potential to establish a standardized approach to proof
verification across various blockchain L1 platforms, bridging the gap between differing proof
mechanisms and enhancing interoperability. By providing a unified framework for verifying
zk-SNARKs, zk-STARKs, Binius, and any future proof innovations, our protocol ensures that all
transaction batches, regardless of their source, adhere to a consistent verification process. This
simplifies the process of assessing the validity of transactions, thereby fostering a more inclusive
and streamlined ecosystem.

5 Conclusion

As ZK proof technology becomes increasingly accessible through advancements in both
hardware and software, we anticipate a significant surge in demand for proof verification
services. This demand will arise from diverse sectors seeking enhanced privacy and security
measures, necessitating a robust infrastructure capable of supporting a wide array of
cryptographic proof types. The zkVerify protocol is designed to meet this burgeoning demand,
ensuring scalability, security, and better performance.

By supporting and efficiently combining new paradigms, including modern proving protocols
like Binius and Circle STARKs, we are committed to driving the next frontier of innovation in
ZK proof verification. In particular, this process represents a convincing next step towards further
cost reduction and easier user interaction and adoption, expanding the frontier of verifiable
computing and making it more accessible to blockchain and Web2 applications. Just as Layer 2
solutions have transformed Ethereum, our protocol aims to supplement and partner with Layer 1
platforms to accelerate their cryptographic roadmaps and bring even more breakthroughs to life.
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